日韩人妻无码一区二区三区久久99_日韩精品一区二区三区中文在线_无码日韩精品一区二区免费_久久久91精品国产一区二区三区_亚洲精品久久久一区黄无码_精品欧美一区二区在线观看欧美熟_精品一区二区高清免费观看_国产免费一区2区3区_国产日韩精品福利视频综合一区二区三区四区

Language:CHINESESENGLISH

Home > News > Essential Knowledge Points for Steel Structures
CONTACT US
  • Address:Pingtang Industrial District, Shipeng Village, Shishan Town, Nanhai District, Foshan City,
  • Phone:0757-81002668/0757-63323396
  • Fax:0757-81196682
  • Contact:Ben Zheng/13826981293 Kerry Lu/13751224830
  • E-mail:sbs@sbsprefabhouse.com
  • URL:http://applebabes.com

Essential Knowledge Points for Steel Structures

Time:[2023-8-12]  Hits:1387

1. When planning steel structures, what will happen if the deflection exceeds the limit value?

Deformation that affects normal use or appearance; Partial damage (including cracks) that affects normal use or durability functions; Vibration that affects normal operation; Other specific conditions that affect normal use.


2. Is it possible to use straight seam steel pipes instead of seamless pipes?


In theory, the structural steel pipes should be the same, but the differences are not significant. Straight seam welded pipes are not as regular as seamless pipes, and the centroid of welded pipes may not be in the center. Therefore, when used as compression components, it is particularly important to pay attention to the high probability of defects in welded pipe welds, and important parts cannot be replaced by seamless pipes. Seamless pipes cannot be made very thin due to the constraints of processing technology (seamless pipes with the same diameter have a uniform wall thickness that is thicker than welded pipes), In many cases, the use of seamless pipe materials is not as powerful as welded pipes, especially for large diameter pipes.


The biggest difference between seamless and welded pipes is when used for pressure gas or liquid transmission (DN).


3. What is slenderness ratio?


Slenderness ratio of structure λ=μ L/i, where i is the radius of rotation. The concept can be roughly seen from the calculation formula: slenderness ratio refers to the ratio of the calculated length of a component to its corresponding turning radius. From this formula, it can be seen that the concept of slenderness ratio takes into account the end restraint of the component, the length of the component itself, and the cross-sectional characteristics of the component. The concept of slenderness ratio has a significant impact on the stability calculation of compression members, as components with higher slenderness ratios are more prone to instability. Can you take a look at the calculation formulas for axial compression and bending components, which all have parameters related to slenderness ratio. The standard for tensile components also provides requirements for slenderness ratio restraint, which is to ensure the stiffness of the components under transportation and installation conditions. The higher the safety requirements for components, the smaller the safety limit given by the standard.


What is the relationship between slenderness ratio and deflection?


1. Deflection is the deformation of a component after loading, which is its displacement value.


2. Slenderness ratio is used to represent the stiffness of axially loaded components. "Slenderness ratio should be a material property. Any component has a property, and the stiffness of axially loaded components can be measured by slenderness ratio.


3. Deflection and slenderness ratio are completely different concepts. Slenderness ratio is the ratio of the calculated length of a member to the radius of rotation of the cross-section. Deflection is the displacement value of a component at a certain point after being subjected to force.


5. Deflection does not meet the standard during planning, can it be ensured by arching?


1. The control of deflection by the structure is planned according to the normal operating limit state. For steel structures, excessive deflection can easily affect roof drainage and create a sense of fear, while for concrete structures, excessive deflection can cause partial damage to durability (including concrete cracks). I believe that the above damages caused by excessive deflection of building structures can be solved through arching.


2. Some structures have simple arches, such as double slope portal frame beams. If the absolute deflection exceeds the limit, it can be adjusted by increasing the roof slope during production. Some structures are not very simple in arches, such as for large-span beams. If the relative deflection exceeds the limit, each section of the beam needs to be arched because the arched beams are spliced into a broken line, while the deflection deformation is a curve. It is difficult for the two lines to overlap, resulting in uneven roofs. Regarding frame flat beams, it is even more difficult to arch them, and they cannot be made into curved beams.


3. Assuming that you are planning to use arching to reduce the amount of steel used in a structure controlled by deflection, the deflection control requirement must be reduced. At this point, the deflection under live load must be controlled, and the deflection generated by dead load must be ensured by arching.


6. Is the buckling of the compression flange of a bent I-beam along the weak axis direction or the strong axis direction?


When the load is not large, the beam basically twists and turns in its maximum stiffness plane. However, when the load reaches a certain value, the beam will simultaneously experience significant lateral twists and torsional deformation, and ultimately quickly lose its ability to continue bearing. At this point, the overall instability of the beam is inevitably due to lateral bending and twisting.


There are roughly three solutions:


1. Add lateral support points for beams or reduce the spacing between lateral support points;


2. Adjust the cross-section of the beam, add the lateral moment of inertia Iy of the beam, or simply add the width of the compression flange (such as the upper flange of the crane beam);


3. The restraint of the beam end support on the cross-section, if the support can provide rotational restraint, the overall stability function of the beam will be greatly improved.


What is the physical concept of post buckling bearing capacity?


The load-bearing capacity after buckling mainly refers to the ability of a component to continue to bear after partial buckling, mainly generated in thin-walled components, such as cold-formed thin-walled steel. The effective width method is used to consider the load-bearing capacity after buckling in accounting. The size of the load-bearing capacity after bending mainly depends on the width to thickness ratio of the plate and the binding conditions at the edge of the plate. The larger the width to thickness ratio, the better the binding, and the higher the load-bearing capacity after bending. In terms of analysis methods, the current domestic and international standards mainly use the effective width method. However, the influencing factors considered by national standards in calculating effective width vary.


Why is there no torsion calculation for steel beams in the steel structure planning standards?


Usually, steel beams are of open cross-section (excluding box sections), and their torsional section modulus is about one order of magnitude smaller than the flexural section modulus, which means that their torsional capacity is about 1/10 of that of bending. Therefore, it is not economical to use steel beams to receive torque. Therefore, construction is usually used to ensure that it is not subjected to torsion, so there is no torsion calculation for steel beams in the steel structure planning standards.


9. Is the displacement limit of the column top when using masonry walls without a crane h/100 or h/240?


The light steel regulations have indeed corrected this limit value, mainly because a displacement of 1/100 of the column top cannot ensure that the wall is not pulled apart. At the same time, if the wall is built inside the rigid frame (such as an internal partition wall), we did not consider the embedding effect of the wall on the rigid frame when calculating the displacement of the column top (which is exaggerated and compared to a frame shear structure).


10. What is the maximum stiffness plane?


The maximum stiffness plane is a plane that rotates around a strong axis. Generally, a cross-section has two axes, one of which has a large moment of inertia and is called the strong axis, while the other is called the weak axis.


Is there any difference between shear lag and shear lag? What are their respective focuses?


The shear lag effect is a common mechanical phenomenon in structural engineering, ranging from a component to a super high-rise building. Shear lag, sometimes also known as shear lag, is essentially the Saint Venant principle in mechanics. It is manifested in detail that within a certain range, the effect of shear is limited, so the distribution of normal stress is uneven. This phenomenon of uneven distribution of normal stress is called shear lag.


The hollow tube formed by opening on the wall, also known as a frame tube, undergoes shear lag due to the deformation of the crossbeam after opening, resulting in a parabolic distribution of normal stress in the column, known as shear lag.


12. What impact will the lengthening of anchor bolt anchoring length have on the stress of the column?


The axial tensile stress distribution in the anchor bolt is uneven, forming an inverted triangular distribution. The upper axial tensile stress is the highest, and the lower axial tensile stress is 0. As the anchoring depth increases, the stress gradually decreases, and finally decreases to 0 when it reaches 25-30 times the diameter. Therefore, adding anchor length again is of no use. As long as the anchoring length meets the above requirements and there are hooks or anchor plates at the ends, the bottom concrete will generally not be damaged by pulling.


How is the length of high-strength bolts calculated?


The length of high-strength bolt screw=2 connecting end plate thicknesses+1 nut thickness+2 washer thicknesses+3 thread mouth lengths.


14. What are the similarities and differences between the stress amplitude principle and the stress ratio principle, and their respective characteristics?


For a long time, the fatigue planning of steel structures has been carried out according to the principle of stress ratio. Regarding a certain number of load cycles and the fatigue strength of components σ Max is closely related to the stress cycle characteristics represented by stress ratio R. right σ By introducing a safety factor of max, the allowable fatigue stress value for planning can be obtained σ Max]=f (R). Constrain stress to [ σ Within max, this is the principle of stress ratio.


Since welded structures have been used to withstand fatigue loads, the engineering community has gradually realized from practice that the fatigue strength of such structures is closely related not to the stress ratio R, but to the stress amplitude Δσ。 The calculation formula for the stress amplitude principle is Δσ≤〔Δσ〕。


[ Δσ〕 It is the allowable stress amplitude, which varies with the details of the structure and also changes with the number of cycles before failure. Fatigue calculation of welded structures should follow the principle of stress amplitude, as the residual stress inside the structure is not a welded component. The stress amplitude principle is fully applicable for stress cycles with R>=0, as the fatigue strength of components with and without residual stress is not significantly different. Regarding the stress cycle with R<0, adopting the stress amplitude principle tends to be more safe.


15. Why should beams be subjected to in-plane stability calculation for compression bending components? When the slope is small, only in-plane stability can be calculated?


The beam only has an out of plane instability form. There has never been a theory of instability in the plane of a beam. For columns, when there is axial force, the calculated lengths outside the plane and inside the plane are different, which is the only way to check the instability inside and outside the plane. For rigid frame beams, although they are called beams, some of their internal forces are always axial forces. Therefore, strictly speaking, their calculation should be based on a column model, which means that both the plane inside and outside of the compression bending component must be considered stable. But when the roof slope is small, the axial force is small and can be ignored, so a beam model can be used, which does not need to calculate the stability in the plane. The meaning in the door regulations (P33, Article 6.1.6-1) refers to when the roof slope is small, the diagonal beam components only need to be calculated for strength in the plane, but still need to be calculated for stability outside the plane.


Why is the secondary beam generally planned to be hinged with the main beam?


If the secondary beam is rigidly connected to the main beam, and there are secondary beams with the same load on both sides of the main beam in the same direction, it is okay. If there is no secondary beam, the bending moment at the end of the secondary beam is out of plane torsion for the main beam, and the calculation of torsion resistance also involves torsional stiffness, sectorial moment of inertia, etc. In addition, the construction workload needs to be added for the rigid connection, and the on-site welding workload is greatly increased, which is not worth the loss. Generally, it is not necessary to not make the secondary beam into a rigid connection.


17. What is plastic algorithm? What is the consideration of post buckling strength?


The plastic algorithm refers to the occurrence of plastic hinges in a statically indeterminate structure that yield to the expected strength at a predetermined location, thereby achieving the redistribution of plastic internal forces, and must ensure that the structure does not form a variable or transient system. Considering the post buckling strength refers to a component accounting method in which the web of a flexural component loses some stability and still has a certain bearing capacity, and fully utilizes its post buckling strength.


18. What is a rigid tie rod and a flexible tie rod?


Rigid tie rods can be both compressed and tensioned, usually using double angle steel and circular tubes, while flexible tie rods can only be tensioned, usually using single angle steel or circular tubes.


Can corner braces serve as support? What are the differences with other supports?


1. Corner braces and braces are two structural concepts. Corner braces are used to ensure the stability of the steel beam cross-section, while braces are used to form a structural system with the steel frame for stability and ensure that its deformation and bearing capacity meet the requirements.


2. Corner braces can serve as support points outside the plane of the compression flange of steel beams. It is used to ensure the overall stability of steel beams.


What should be considered when planning axial tension components of steel structures?


1. Under the static load effect of not generating fatigue, residual stress has no effect on the bearing capacity of the tie rod.


2. If there is a sudden change in the cross-section of the tie rod, the distribution of stress at the change point is no longer uniform.


3. The planning of tie rods should be based on yielding as the ultimate bearing capacity.


4. The ultimate bearing capacity should be considered from both gross and net sections.


5. Consider the power of the net cross-section.


How to calculate the stiffness of the tension spring of the steel column? What is the accounting formula? How to calculate the stiffness of the tension spring of the concrete column and the stiffness of the tension spring when there is a ring beam on the concrete column? What is the accounting formula?


The stiffness of the tension spring refers to the calculation of the lateral displacement caused by applying one unit force to the top of the column as a cantilever component. This displacement is called the stiffness of the tension spring, usually measured in KN/mm. If there is a ring beam, in the direction without ring beam constraints, the stiffness calculation of the tension spring is the same as that of the cantilever component. In the other direction, because there is a ring beam at the top of the column, the EI in the calculation formula is the sum of all columns in that direction.


22. What is skin effect?


Under the effect of vertical load, the movement trend of the roof portal frame is that the ridge is downward and the eaves are outward deformed. The roof panel will resist this deformation trend in the form of deep beams along with supporting purlins. At this point, the roof panel receives shear force and acts as the web of the deep beam. The edge purlins receive axial force to lift the deep beam flange. Obviously, the shear resistance of the roof panel is much greater than its bending resistance. So, the skin effect refers to the resistance effect of the skin plate due to its shear stiffness on the load that causes deformation in the plane of the plate. Regarding the roof portal frame, the skin effect of resisting vertical loads depends on the slope of the roof, and the skin effect becomes more significant as the slope increases; The skin effect that resists the horizontal load effect increases with the decrease of slope.


The skin elements constitute the entire structural skin effect. The skin unit consists of skin panels, edge components, connectors, and intermediate components between two rigid frames. Edge components refer to two adjacent rigid frame beams and edge purlins (ridge and eave purlins), while intermediate components refer to the purlins in the middle. The main functional indicators of skin effect are strength and stiffness.


23. The theory of small deflection and large deflection is used for the bending and buckling of axial compression components. I would like to know the difference between the theory of small deflection and small deformation?


The theory of small deformation states that changes in geometric dimensions after structural deformation can be disregarded, and internal forces are still calculated based on the dimensions before deformation! The deformation here includes all deformations: tension, compression, bending, shear, torsion, and their combinations. The small deflection theory assumes that displacement is very small and belongs to geometric linear problems. It can be approximated using a deflection curve equation, and then energy is established to derive the stability coefficient. The deformation curvature can be approximated by y "=1/ ρ Replace! Replacing curvature with 'y' is used to analyze the small deflection theory of elastic rods. In a rigid rod with a tension spring, that's not the case. Furthermore, using the theory of large deflection does not necessarily mean that after buckling, the load can still be added. For example, if a cylindrical shell is compressed, it can only maintain stability under lower loads after buckling. Simply put, the small deflection theory can only obtain the critical load and cannot determine the stability at critical load or after buckling. The theory of large deflection can solve for the post buckling function.


24. What is second-order bending moment and second-order elastic-plastic analysis?


For many structures, undeformed structures are often used as accounting graphics for analysis, and the results obtained are accurate enough. At this point, there is a linear relationship between the obtained deformation and load, and this analysis method is called geometric linear analysis, also known as first order analysis. For some structures, internal force analysis must be based on the deformed structure, otherwise the resulting error will be significant. At this point, the relationship between the obtained deformation and load presents a nonlinear analysis. This analysis method is called geometric nonlinear analysis, also known as second order analysis. Using the deformed structure as the accounting basis and considering the elastic-plastic (material nonlinearity) of the material for structural analysis is a second-order elastic-plastic analysis.

Copyright:佛山市勝邦鋼結(jié)構(gòu)有限公司 Foshan Shengbang Steel Structure Co., Ltd. Record Number:粵ICP備13078463號(hào)
爱之国产色情综合| 丁香色色色| 丁香五月电影| 在线看片av| 色色com| 六月丁香五月激情婷婷| 66精品成人免费网站在线观看| ...婷婷国产成人亚洲日韩| 丁香五月婷婷激情网| 丁香婷婷午夜| 日本3级片一区2区| 综合激情开心五月| 激情五月丁香社区| 久久五月综合| yw国产AV| 丁香五月色五月| 免费播放片大片| 丁香五月激情啪| 五月婷婷久久大香蕉| 丁香五月激情啪| 激情婷婷丁香色五月综合| 精品99爱免费视频在线观看| 五月天亚洲综合网| 开心五月深爱五月| www九九免费视频| www久久99| 99无码视频| 五月色综合| 超碰在线caop| 99riAV国产精品视频| 天天操九九插| 综合五月天| 超碰成人电影| 欧美性爱中文字幕| 丁香婷婷激情五月天无毒不卡蜜桃| 欧美色97| AV大片在线播放| 亚洲AV久久久久久久久久久久久久久久 | 久久亭亭电影| 色欲天天综合网| 夜夜爽天天| 综合狠狠干| av在线中文| 亚洲九九夜夜| 超黄亚洲瑟瑟网站| 久久精品99久久久久久| 碰碰碰97国产| 无码色色| 伊人色综合网| 9九热视频| 综合热无码| 色色色综合色| 91爱啪啪| 夜夜爽天天爽| 无码橾| www.lingjunshare.com| 五月婷婷欧洲| 激情五月天在线| 精品久久久人妻| 思思热视频| 99在线免费视频播放| www婷婷| 久久婷婷久久| 激情六| 夜夜干天天操| 综合久久综合五月天婷婷| 五月丁香六月婷婷综合伊人| 六月综合婷婷开心伊人| 99热99思午夜精品| 六月丁丁香| 九九综合网色全集 | 综合六月久久| 婷婷区日本| 亚洲婷婷五月天| 熟女乱论网| 另类小说五月天| 五月丁香日本一抹本| 婷婷丁香97| 婷婷色狠狠| 婷婷五月天Av| 无码字幕中文| 亚洲激情av| 九九精品re免费视频| 久久五月天色婷婷| 99热综合在线观看| 在线另类视频| 色五月五月天| 久热超碰91| 婷婷五月情天| 丁香花五月天婷婷成人社区| 99在线免费观看| 超碰色热| av在线免费播放| 婷婷五月天成人网| 色婷婷五月天| 激情五月天小说|五月天开心激情网|亚洲精品国产自在现线|黄色五月天 | 97男人天堂| Jh7Uf088VHafNm| 北京熟妇搡BBBB搡BBBB| 夜夜操夜夜操| 成人色色综合| 久久综合影院| av操逼网| 久久五月天综合| 日韩久热| 五月丁香六月| 日日操夜夜爽| 免费久久这里只有精品99| 夜色.cnm| 亚洲精品V天堂中文字幕| 日本色频| 伊人爱爱日本| 激情网五月| 五月丁香久久呀| 综合性爱网| 久久精品99国产精品日本| 婷婷丁香五月天婷婷| 被强行糟蹋的女人A片| www色五月天| WWW久久99久久99久久| 97人妻碰碰中文无码久热丝袜| 色噜噜狠狠色综| 伊人婷婷五月天| 啄木鸟丝袜美女福利视频| 久热91精品| 91|疯狂丨高潮丨对白| 99这里只有精品视频| 天天操夜夜啊| www狠狠| 国产99久久久国产精品免费看 | 99热亚洲精品| 九九热视频免费| 大香蕉九九| 超级碰碰视频无码| 99热91| 五月天网站免费欧美| av婷婷丁香 六月| 99色免费| 午夜69成人做爰视频| 日韩av在线免费观看| 色五月色五天色情网| 青青草原亚洲天堂| 91五月花丁香| 国产精品色情AAAAA片软件| 久久久久久久合一狠狠做深爱| 思思热久久阴99| 一级性爱大片| 老妇六区| 久久婷婷超碰| Av免费网站在线| yazhoujiqingav| 国产一区二区三区影院| 无码少妇高潮喷水A片免费| 九九九九毛片| 99操逼| 99久久99久久| 婷婷久久网| 69久久99精品久久久久婷婷| 日本人妻A片成人免费看片| 日本五月天激情| 婷婷丁香五月欧美人| 天天插天天射天天干| 97碰碰免费.视频| 青草视频在线观看视频| 极品少妇XXXX精品少妇偷拍| 久久久国产精品黄毛片| 婷婷五月花.97| 99这里有精品视频| 婷婷91视频| A片试看50分钟做受视频| 日韩人妻在线观看| 日本三级韩三级99久久| 伊人综合网站| 日本美女97在线视频| 九九综合九| 久久99久久99精品,久国产,久久精品免费,99久在线,久久久久国产精品免费网站,9 | 日本熟妇精品99| 成人综合视频网址| 免费啪啪啪网站| 婷婷99狠| 婷婷丁香色情| 9精品视频在线| 三级99热| 婷婷五月天成人在线视频| 丁香五月天黄色片| 久久五月丁香激情综合| 婷婷六月五月| 思思热久久爱| 成人网站在线观看视频| 99久久www| 色噜噜狠狠色综合日日| 狠狠干婷婷| 色偷偷五月天| 九九爱精品网站| 青青草Avb在线| 婷婷久久性爱| 婷婷五月天伦理| 五月婷中文字幕| 这里只有精彩小视频视频网站| 色色成人網| 亚洲色色色色| www.henhenl| 五月天婷婷小说| 丁香五月综合婷婷| 91919191919久久成人视频| 香蕉色色网| 91丨九色丨白浆| 五月综合视频在线| 激情网五月| 天天色视频| 91丁香色| 色五月婷婷自拍| 亚洲精品色色| 五月天激情四射网站| 五月丁香色综合| 色约约视频一区二区三区四区五区 | 欧美婷婷丁香五月社区| 91狼友视频网页更新| 国产91九色| 五月婷婷丁香啪啪| 五月丁香免费看| 婷婷五月天激情文学| 久久久久婷婷| 欧美啪啪网| 色狠狠五月天| 综合一区二区三区| 嫩草免费视频| 亚洲色爽| 99精品久久| 丁香亭亭激情四射| 狠狠88综合久久久久噜噜噜| 五月天激情久久| 天天揷综合网| 婷婷五月激情六月丁香 | 开心五月丁香啪| 丁香激情五月| 国产精产国品一二三在观看| 丁香婷婷六月婷婷六月婷婷六月婷婷| 五月婷婷开心亚州在线| 久久性爱视频| 婷婷四月 成人 狠狠干| 97碰免费视频在线| 99热高清在线| 综合xx网| 激情色色| 久草视频一,二三四| 亚洲丁香五月在线观看| 丁香婷婷天堂| www久热com| 99在线免费视频| 久久性刺激| 五月婷婷无码| 潮汕成人AV片在线| 夜夜撸天天操| 国产欧美日韩综合精品一区二区| 欧美激情丁香五月天久久婷婷一区| 欧美六月| 婷婷亚洲综合| 色婷婷基地| 操操自拍| 九九激情综合| 六月丁香婷婷视频综合在线观看| 五月丁香久久| 五月天丁香啪啪综合| 久久停停超碰| 久久97| 五月丁花六月丁香综合| 97丁香视频| 丁香六月激情综合啪啪| 色婷婷丁香五月| 国产激情综合五月久久| 婷婷五月天基地| 色噜噜狠狠色综| 亚洲综合激情五月久久| 玖玖伦理电影| 久久5 9视频免费观看| 激情激情激情网| 99网址在线观看| 久久欧洲综合网| 先锋影音男人的天堂AV| 五月婷婷六月丁香玖玖玫瑰91| 亚洲成人综合网在线免费观看| 丁香五月综合在线观看| 停停五月色宗合| 婷婷五月天另类网站| 99热每日| 国产avapp 网| 五月丁香激情五月天| 丁香五月性爱| 97五月天婷婷| 日韩精品一区二区亚洲AV观看| 国产激情av| 婷婷综合色色| 色五天综合| 深爱五月日韩| 色优久久| 91麻豆国产三级精品福利在线观看| 日韩精品无码99| 日本黄色精品| 91chinese在线| 天插天啪天啪天啪| 大香蕉人在线65| 99热国产| 天天日天天干天天插天天射| 99热碰碰热| 婷婷激情五月| 先锋av性爱成人电影| 色婷婷激情视频| 丁香久久综合| 精品色色网| 超碰高清在线| 中文字幕 中文字幕明步| 97热这里只有精品| 5月婷婷6月丁香aV| 91视频一起草| 9l久久久视频| 九九精品热| 狠狠搞亚洲| 日本系列_4页_777FP| 婷婷五月天成人网| 亚洲旡码| 婷婷五月天免费视频| 我爱大香蕉| 九月丁香网婷婷| 激情丁香社区| 丁香五月婷婷在线观看| 婷婷5月天激情综合| 婷五月天| 色色三级视频| 五月丁香综合| 51XX午夜影福利| 五月色婷婷激情| 97碰免费视频在线| 色青五月天| 思思热久久艹| 97热这里只有精品| 五月天堂在线| 99re在线精品视频| 超碰激情五月| 91九九九色在| 国产伦亲子伦亲子视频观看| 热久久99热欧美国产亚洲| 婷婷干五月综合在线播放| 天天插天天狠| 久久色情| 国产精品久久..4399| 九色porny在线观看激情四射| 五月丁香六月激情综合| 色色色色色色色色网站| 人人操AV| 日本超碰在线| 五月天婷婷基地综合网| 人人干女人| 久久视频这里99| 97激情五月天| 色五月超碰| 91色碰| 国模九区| av五月天婷婷丁香| 久久9情免费| 欧美性猛交99久久久久99按摩| 成人av免费观看| 可以看的av| 99色免费观看全部| 成人开心五月天| 五月花亭亭| 婷五月丁香| 五月婷婷开心深| 超碰99在线观看| 激情九月婷婷| 五月天婷婷一起草| 六月婷婷狠狠色在线观看| 丁香婷婷久久| 夜夜噜夜夜奇| 99热这里只是精品| 五月丁香六月婷综合成人综合| 九九一综合精品| 丁香五月第九色| 狠狠色性| 五月婷婷视频28| 丁香五月婷婷在线视频| 丁香婷婷五月天在线视频| 玖玖精品视频| 亚洲愉拍99热成人精品| 精品久久人妻| 91男人操女人视频| 婷婷基地成人五月天| 狠狠色狠狠色综合日日91| 区啪精品| 伊人婷婷大香蕉| 思思热久久艹| 深夜婷婷五月丁香| 丁香婷婷五月基地| 国产在线黄色| 99热这里| 98热精品| 亚洲精品网站色视频| 色五月激情问网站| 天天色综合综合| 久久久免费精彩视频| 棕合影院色色| 被强行糟蹋的女人A片| 偷拍丁香九月激情| 啪啪黄页网| 天搞天天天天天| 激情网站综合五月天| 日日操,夜夜爽| 五月天综合视频网| 色色色网站| 亚洲乱码日产精品BD| 男女激情久久| 久久婷五月天| 五月婷婷丁香狠狠撸久久| 激情五月丁香亭亭| 欧洲色色| 综合久久高清| 久热最新视频| 五月花激情| 热久久999| 色婷婷888| 婷婷六月丁香激情综合| 激情五月天啪啪| 亚洲日韩一页精品发布| 91无码高清| 亚洲综合新99视频| 久久综合五月天| 性欧美大战久久久久久久83| 久热 91| 五月丁香婷中文| 在线观看av网站| 天天日天天插| 99久久www| 另类激情五月| 久久草大香蕉| 亚洲成人在线免费| 五月丁香婷婷AV| 亚洲天堂aaaa| 99在线精品视频| 综合九九久久| 丁香五月激情六月综合| 五月激情偷拍| www.射伊蕉婷婷| 亚洲综合五月天综合| 丁香久久五月婷综合| 一级片操逼视频| 碰超99| 天天操天天操天天操天天操天天操天天操天天操天天操天天操 | 日本狠狠干| 99精品视频免费观看近期发布| 日韩不卡DvD| 五月六月婷婷| 一本到不卡高清DVD| 亚洲第一色色色色| 激情小说五月天| 1234操逼网| 99热只有精| 类似婷婷激情综合网站| 美女视频图片久久91| 99热这里只有精品10| 超碰在线人妻| 久热91| 日本99在线视频| 中文在线视频久9| 国产精品色一哟哟| 日韩在线观看网址| 狠狠干在线视频| 五月激情小说| 久久婷婷六月| 色婷婷丁香五月| 三级三久久线久久99久目本WW| 噜噜在线| 欧美精产国品一二三区| www.超碰在线| 激情网战码亚洲A| 色噜噜综合网| 五月丁香网视频| 国产激情久久久| 久久色婷婷| 99欧美| 日本老女人黄页在线播放| 99人碰碰碰| 久热欧美| 亚洲激情AV| 久久99最新| WWW.国产| 六月婷婷色宗合| 欧美五月停| 严洲天天插| 亚洲啪啪自拍| 激情亚洲婷婷| 婷色五月| 琪琪色网在线| 无码任你操| 97碰人人操| 婷婷伊人网| 开心婷婷中文字慕| 欧美性生交XXXXX无码小说| 青青五月天婷婷| 九色99视频| 日日噜狠狠色综合久| 91成人看片| 婷婷综合久久| 丁香婷婷五月六月天| 色婷婷狠狠久久综合五月| 五月婷婷婷婷| 成人日韩欧美| 精品综合网在线| WWW.桔色成人.COM| 亚洲精品va| 婷婷丁香日韩五月| 婷婷涩涩五月天| 看黄的网站18禁| 精品爱欲五| 深爱婷婷网| 国产免费一区二区在线A片视频| 久久女婷| 久久人妻人人| 66久久视频在线| 91猫咪国产在线播放| 思思99久久| 丁香婷五月天| 五月丁香欧美综合| 射婷婷中文字幕| 久久99大全| 五月色婷婷综合丁香精品无遮挡| 婷婷色色欧美| 国产精品天天狠天天看| 色综合丁香| 另类小说五月天激情| 久久丁香五月| 久热精品免费视频4| 99综合一区| 深爱五月天 开心网| enecarbon-materials.comWu染请涟系Bao护@wip1688 | 丁香五月天论坛| 5月色婷婷| 久九九热| 综合狠久久| 欧美va在线| 五月丁花六月丁香综合| 色情丁香五月天| WWW99热| 亚洲九九99精品视频在线播放| 色久女| 婷婷五月天激情五月天网站| 91碰碰碰| www.97碰碰com| 色综啪啪| 日本视频不卡123区| 91狠狠综合久久| 美女五月狠狠| 久久久区区一久久久久久| 亚洲午夜av| 五月天婷婷社区久久综合| 熟女强人妻一区二区三区四区无| 五月丁香六月综合激情| 天天色图| 五月婷婷AV| 五月天婷婷黄色视频| 五月天伊人综合| 丁香婷婷五月人体| 亚洲色区17| 狠狠五月婷婷| 92久久精品一区二区| 99热这里全是精品| 色色激情五月天| 色99日韩| 亚洲AV人人操| 成人综合视频在线| 九九热99熟女| 台湾无码A片一区二区| 丁香婷婷视频在线| 夜夜谢天天干| 五月婷婷导航| www.久久爱.com| 久热免费视频| 噜噜操操| 久久九九网| 激情四射网| 91婷婷在线| 影音先锋四区| 六月激情婷婷| 九月婷婷色色| 97久久超碰| 99久久婷婷| 97人人干人人操| av在线观看免费| 99热官网精品在线| 九九久久99| av国产精品| 偷偷与邻居做爰完整视频| 无码激情AAAAA片-区区| 两性婷婷丁香五月| 七七久久婷婷| 丁香久久综合| 久久天天天| 婷婷大美在线| 五月丁香龟婷婷| 五月天婷婷激情小说电影| 九九视频在线| 91九色视频| 日本片日本片祼观看网站在线看中文版网页在线看 | 婷婷丁香六月| 96精品成人无码A片观看金桔 | 9|无码久久久久久| 99re思思精品视频在线观看| 99视频在线观看欧| 五月丁香六月成人| 免费观看亚洲AV片| 99国产精品久久久久久久久久久| 婷婷五月色综合香五月| 五月天久久网站| 另类在线| 久久亚洲婷婷| 秋霞性爱AV| 亚洲亚洲人成综合网络| 欧亚中文A V| 国产精品久久..4399| 丁香五月婷婷六月婷| 丁香六月无码播放| 色播丁香| 色婷婷91激情小说| 99久久9| 色综合日日| 9l视频自拍九色9l视频自拍九色9l社区| 色婷五月天| 9色小视频在线观看| 久久色婷婷| www久热com| 久久ww| 五月天婷婷Av| 只有精品在线观看| 五月激情影视| 国产做A爰片毛片A片美国| 免费超碰在线| 亚洲色域网| 在线中文字幕视频| H亚洲| 久久这里只有国产| 天天日天天干天天操| 色久综合| 97人人做| 久久视频在线| 男女啪啪做爰高潮无遮挡| 色色色97| 99亚洲大片精品永久在线观看| 99riAv1国产在线观看| 五月丁香婷婷五月色| 亚洲1区| 婷婷99狠狠| 五月天开心色色网| 婷婷六月丁香开心深深爱| 无码色色色| 五月婷婷av在线| 深爱五月激情网| 丁香激情四射| 欧洲区自拍| 日日夜夜噜噜爽爽| 中文字幕按摩做爰| 另类图片天天影视在线观看| 激情五月天小说网| 伊人激情综合| 思思热热久久| 亚洲妇女熟BBW| 99视频超级精品| 色五月成人| 色五月中文字幕| 26uuu另类| 国产成人精品一区二三区熟女在线| 热九九精品| 97五月久久丁香婷婷| 中文字幕天天干| 婷婷五月六月丁香综合| 亚洲视频在线观看| 五月婷婷|欧美| 玖玖资源站中文| 亚洲xx在线| 5月婷婷激情6月| 亚洲精品一区中文字幕乱码| 狠狠人人| 国产精品第一国产精品| 深爱开心五月天| 成人精品视频99在线观看免费| 激情五月天综合网站网站网站| 99热91| 亚洲五月婷| 欧美色色色| 亚洲婷婷在线播放十月| 来吧亚洲综合网| 五月婷婷六月丁香激情深爱| 99精品热| 婷婷五月俺要去| 影音先锋高清无码资源网| 天天操天天日天天爽| 伊人婷婷福利网| 五月婷婷五月天亚洲无码| 婷婷丁香成人色综合| 婷婷爱五月天人人爱| 人妻免费网站| 99精品视频网| 91人人网| 久久99网站| 丁香五月在线观看综合| 99精品久| www.91.com黄| 久久久精品视频79| 五月婷婷综合网| 亚洲小说欧美激情| 久热爱大香蕉在线蜜臀悦色| 另类 在线| 婷婷五月av| 激情五月天综合网| 狠色色狠网| 婷婷九月狠狠色| 婷婷狠狠操| 人妻在线中文字幕久久| 日本欧美啪啪| 91碰碰碰| 欧美天天干天天草| 五月天丁香婷| 亚洲国产精品SUV| www激情com| 大香蕉婷婷五月| 亚洲国产精品SUV| 婷婷99狠狠躁| 97成人丁香婷婷| 91在线观看九区| 九九婷婷综合| wwccc久久久| 国产44页| 丁香激情五月| 婷婷五月天伊人| 午夜色色色极品视频| 久久曰9| 激情六月丁香| 五月久久亚洲| 网色99| 亚洲mm免费| 成人片在线播放| 九九色视频| 大香蕉五月天婷婷| 五月丁小婷婷激情四射| 五月丁香激情啪啪| 九九九九这里只有精品| 色色热99| 五月久久网| 麻豆观看夏晴子| 婷婷五月天久久| 深爱五月最新网址| 激情五月激情综合俺也去婷婷小说| 婷婷不卡基地| 国产成人综合网| 天天日天天操心| 青青草六月丁香| 色婷婷99| 精品99在线| 九九丁香社区欧美激情| 玖玖婷婷五月天| 天天爱天天做天天| 99热只有国产在线精品| www.99在线| 五月天婷婷亚洲| 中文字幕中文有码在线| 亚洲激情综合| 天天色图| 丁香五月在线播放| 五月婷婷激情综合拍| 伍月婷婷免费视频| 久综合色| 久久jiuwww| 五月天另类小说久久小说网| 久久98| 中文字幕视频在线播放| 亚洲另类视频| 激情五月婷婷老师| 五月丁香六月合| 99热网站在线观看| www.色五月| 91成人视频| 狠狠色丁香久久婷婷综合五月| 激情亚洲五月| 色爽干| 亚洲乱码日产精品BD| 99热色精品| 日日.c| 九九色影视| 九九色综合网| 91超级碰在线| 中文字幕丰满人妻无码专区| 精品久久艹| 天天干天天射色综合| 26uuu亚洲欧美| 亚洲九九99精品视频在线播放| mmm1717.6dbm人人爱人人操| 狠色狠色狠狠色综合网| 人妻久久久久久久久妻久久久久久久久| 亚洲一级色电影| 九九热99免费视频| 中文字幕,综合,91| 97久久精品| 久久性爱视频| 99re思思热在线视频| 色婷婷综合久色AV五色最新| 色五月综合婷婷久久综合婷婷久久综合婷婷久久综合婷婷久久 | 五月色色色| 激情av| 五月天婷婷色五月天| 色久婷婷五月| 日日干夜夜撸夜夜骑| 国产综合激情五月久久| 思思热精品免费视频| 热这里| 激情婷婷五月天日本系列| 婷婷五月18永久免费视频| 狠狠干综合网| 天天综合久久| 99久久99九九99九九九| 成人精品在线| 九月激情婷婷丁香| 国产色色小草视频| 97碰碰在线观看视频| 操九色| 激情五月天丁香| 无码人妻一区二区三区四区| 亚洲欧州色情在线观看| 日本欧美成人片AAAA| 性爱网五月天| 公的粗大挺进了我的密道| 久久久一级AAA| 亚洲AV永久无码影院黑人| 99爱99操| 男人天堂亚洲综合| 亚洲激情97五月天| 五月婷婷与六月丁香图片激情| 天天干电影| 国产黄色在线观看| 91疯狂操操操操| 五月丁香狠狠爱| www,色中色| 婷婷激情五月| 五月丁香色综合| 97婷婷丁香五月综合| 欧美激情综合色综合啪啪五月| 日本色频| 99愛国产| 五月丁香六月激情欧美综合| 91紱請| 久99久99精品免| wWw色五月| 亚洲AV色婷婷人禽五月天| 亚洲精品99| 在线不卡AC| 99久久婷婷国产综合精品草原| 先锋av性爱成人电影| 超碰日日操| 中文字幕成人网站| 97人操人免费视频| 精品综合久久久久久五月天| 婷婷丁香五月激情密臀av| 成人做爰A片免费看视频| 色一情一乱一乱一区9| 丁香婷婷六月婷婷六月婷婷六月婷婷| 五月激情偷拍| 99色在线| 中美月韩免费A片| 五月天黄色激情小说| 亚洲中文字幕AV| 九九综合九色欧美狠狠| 开心久久xxx色| 丁香五月六月| 成人做爰高潮A片免费视频| 五月丁香网站| 亚洲激情综合五月婷婷啪啪| 丁香九月激情| 色五月婷婷天堂| 亚洲激情丁香五月基地| 91性高潮久久久久久久久| 婷婷五月激情综合网| 久青青久| 五月婷婷六月丁香综合| 大香蕉在线观看9| 激情五月综亚网| 人妻人人操| 性爱七区| 人妻精品久久久久久| 欧洲色| 99久久综合网| 亚洲综合在线播放| 婷婷色一二三区波多野结衣| 婷婷丁香五月激情图片| 成人丁香五月| 91无码视频| 五月丁香六月婷婷啪啪| 激情五月最新网址| 思思久久96热在精品国产,| 天天婷婷综合亚洲亚洲| 久久综合无| 99亚洲视频| 六月丁香啪| av性爱在线| 日韩黄在免| 久久这里面只有精品视频| www.99热| 五月色色色| 91色五月| 9l视频自拍九色9l视频自拍九色9l社区| 亚洲av骚货| 五月天婷婷激情四射综合| 狠狠干 狠狠操| 中文字幕视频色婷婷| 色婷婷五月基地在线| 日本色婷婷| 婷婷五月天最新综合你懂的| 综合激情五月天| 色婷婷欧美| 99久久综合| 秋霞免费三级片| 99热网站| 思思热久久阴99| 五月天婷婷久久| 99热国产国产| 国精产品一区一区三区免费视频| caobi四区| 1000部毛片A片免费观看| 丁香激情五月综合网| 婷婷中文字幕| 夜夜噜夜夜奇| 五月婷三级片| 综合色五月| 99热销国产这里有精品| 色婷婷免费视频| 99黄色性生活| 欧美激情综合| 秋霞簧片| 超碰啪啪网| 99久在线精品99re5热视频| 免费播放片大片| 色五月婷婷色| 欧美成人无码高清一区二区三区| 成人做爰A片免费看网站找不到了| 激情播丁香| 中文字幕操比影片| 婷婷五月天六月丁香| 婷婷伊人综合中文字幕| 五月花激情| 夜夜天天天天天干天天爽| 色色综合网。| 婷婷八月丁香激情综合| 丁香婷婷性爱| 99在线精品免费视频| 色丁香久久久| 中文字幕AV网址| 亚洲精品亚洲人成人网| 五月婷婷六月激情网| 色色色天堂网| 综合色五月| 五月婷婷激情色情网| 一级黄色操B| 婷婷基地爱| 日本性激情色播| 人妻aV在线| 色婷婷五月天| 色播五月| 成人深爱丁香五月| 1024久婷| 天天爱天天操| 亚洲视频图片婷婷五月| 97色婷婷成人综合在线观看| 专区无日本视频高清8| 婷婷婷婷色| 五月天日日操夜夜操 | 婷婷久久影院| 狠狠狠狠狠狠| 久久九九色| 开心婷婷五月激情网小说| 久久99精品久| 五月天激情网站| 亚洲视色| 这里只精品| 九九热婷婷| 无码AV免费精品一区二区三区| 久久五月天综合| 狠狠做五月婷婷| 91丨九色丨熟女丰满| 丰满少妇猛烈A片免费看观看| 婷婷少妇激情| 日韩色色视频www| 色婷婷成人| 超级碰人人操人人干| 少妇高潮A片无套内谢麻豆传| 婷婷色综合av| 极品五月天| 密黄站| 99九九玖玖| 91狼友视频网页更新| 五月丁香影视| 五月天婷婷综合网| 丁香色情五月综合网站| 思思色播| 色哟哟www| 丁香五月婷婷综合激情啪啪啪啪啪啪啪| 婷婷亚洲综合| 99玖玖免费视频| 这里只有久久精99| 丁香婷婷五月六月天| 性爱先锋AV| 日本久久婷婷| 99偷拍视频在线日本| 九九无码AV| 操碰97| 婷婷激情五月| 欧美色97| www.99热这里精品| 丁香婷婷视频一区二区| 五月丁香啪啪激情| 午夜色色色极品视频| 在线成人网站| 日本久久视频| 亚洲午夜Av| 色婷婷啪啪| 天堂va久久久噜噜噜久久Va| 婷婷色色亚洲| 麻豆AV一区二区三区| www.婷婷五月天| 综合网激情| 五月花激情| 五月婷婷综合网| 久久婷婷五月天懂色| 五月婷婷色影院| 久热黄色| 久久多色| 91爱操| www.久久久久| 激情五月天色网站| www.久久久.com| 丁香五月另类色婷婷麻豆| 人人摸人人澡人人| www,超碰| 成人丁香色| www.婷婷五月| 婷婷色五月天在线| 99热这里只有精品1| 天天爽夜夜操| 另类小说五月天| 精品亚洲国产成人A片在线鸭王| 少妇人妻人伦A片| 夜夜爽77777妓女免费下载| 99久热| 欧美综合激情| 丁香五月婷婷操逼| 九九热99精品| 五月婷婷激情日本| 啪啪婷婷五月天激情| www色色com| 婷婷久久婷婷色五月| 天天做天天爱天天爽在| 人妻videos人妻高清| 色婷婷五月天综合网| 丁香婷婷成人网| 99视频网址| 97操操| 夜精品无码A片一区二区蜜桃| 婷婷丁香九色| 玖玖99精品视频| 天天射美女| 婷婷激情丁香五月婷婷激情丁香五月婷婷 | 欧日韩成人| 激情五月综合网| 热日韩欧美| 偷偷操99| 秋霞三级色戒| 日本熟女内射| 五月天丁香婷| 婷婷五月天基地| 天天日日| 91色逼| 久er7久热| 99成人免费热视频| 超碰在线精品| 免费看欧美成人A片无码| 精品自拍97| 色婷婷久久综合| 婷婷久久六月费| 婷婷五月丁香超碰| 99操视频| 奇米色大香蕉| 欧美一级色| 99久久九九| 91九色精品熟女内射| 97在线观视频免费观看| 欧美精品A片一区在线观看| 全亚洲最大的婷婷五月天网站COM| 激情综合网亚洲色图| 色狠狠999综合| 国产午夜精品AV一区二区麻豆| 五月激情婷婷国产精品久久久久久| 婷婷五月丁香综合亚洲| 亚洲aV写真天天综合网久久| 色婷婷影视| 99热99日天天干| 无码地址| 另类激情综合| 99精品偷自拍| 大香蕉人在线65| 5月婷婷激情6月| 超碰大香蕉网| 九月色婷婷婷| 99热99日…..| 亚卅毛片| 九日日夜夜69| 天堂婷婷五月在线| 91啪啪网| Av中文在线| 丁香婷婷五月天校园春色| 九九热这里只有精品6| 性av| 天天色综和网| 婷婷综合成人| 九色亚洲| 色五月久久成人婷婷| 综合99久久| 手机在线视频观看9| 欧美一区二区三区不卡影视| 九九久久五月天| 91九色成人原创视频| 26uuu国产精品| 另类小说五月天| 99久久精彩视频| 日韩综合大黄| 天天干,夜夜爽| www.五月天婷婷| 久久这里只| 乱乱av| Xx色综合| 色婷婷婷婷| 变态另类9| 精品色色| 密视AV综合在线| 精品51XX| 99丁香婷婷综合网| 婷婷五月AA五月在线| 亚洲操B| 91碰碰碰| 五月婷婷影院| 美妞av| 久久婷婷五月天懂色| 免费看欧美成人A片无码| 曰本aaaaaa丈片| 色婷婷五月天不卡| 国产亚洲精品久久久久久久久动漫| www.av视频xx999.com| 婷婷深爱五月| 成片免费观看视频大全| 日本在线视频www色| 激情综合国产| 五月丁香婷草| av国产精品偷| 粉嫩av懂色av蜜臀av熟妇| 人人操97| 五月婷婷天|